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Abstract In this paper, we build on our previous research on probabilistic founda-
tions of dynamical systems and introduce a theory of linear representation for ordinary
differential equations. The theory is developed for explicit ODEs and can be further
extended to cover implicit cases. In this report, we investigate the case of a canonical
single unknown autonomous system. First we construct a linear representation to get
an infinite linear ODE set with a constant coefficient matrix which can be transformed
into an upper triangular form. Then we find its approximate truncated solutions. We
describe a number of properties of the theory using this framework. The companion of
this paper expands this canonical approach to cover multidimensional cases using the
theory of folded arrays which is another line of research established by our research
group.

Keywords Dynamical systems · Probability · Expectation values · Ordinary
differential equations · Linear algebra · Matrix theory

1 Introduction

This work is devoted to the investigation of the initial value problems of explicit
ordinary differential equations (ODEs). Mathematical research on this topic is vast,
therefore we cannot possibly justly reference all contributers to this massive topic.
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Having said that, we would like to point out the work by Arnold [1] which is rel-
evant to the Evolution Operator concept we are going to present here. The primary
focus of this paper is to introduce a new approach to linearization of a single explicit
ODE with initial condition. ODEs are used in a diverse set of scientific and engi-
neering disciplines with a variety of goals. One of the goals of our research is to
introduce a linearization which feels more natural for certain disciplines such as quan-
tum chemistry. The approach described here relies on our previous research in which
we developed a first order infinite set of ODEs with an infinite constant coefficient
matrix under an infinite number of initial conditions [2,3]. The most influential source
of inspiration with this new approach is earlier research on the expectation dynamics
in quantum mechanics [4,5] which we have further translationally developed to inves-
tigate dynamical systems [6–8]. Another source of motivation for this work, is the Lie
algebraic factorization of the evolution operators which was proposed earlier by the
first author [14,15]. Furthermore, our efforts are subtended by intuitions underlying
the mathematical fluctuation concept and the fluctuationless theorem developed in the
first author’s group which has found contemporary applications on ODEs and related
problems [9–13].

In this work, we follow established and pure mathematical principles to construct a
set of probabilistic evolution equations using a basis set. We also construct the ODEs
for the set elements. In this first paper, we detail the canonical mathematical struc-
ture underlying the application of this approach to the one unknown case to show the
essential properties of our perspective. The more complicated case which involves
multiple unknowns is basically an extension of the principles outlined in this paper to
multidimensional arrays and folded arrays (folvec, folmat, folarr).

This paper is organized as follows. The second section presents the linear repre-
sentation of a single autonomous ODE. In the third section, we explain the motivation
behind using the term “Probabilistic Evolution”. The fourth section is primarily about
the triangular cases. Subsequently, in the fifth section, we describe the spectral prop-
erties for the triangular case. Then, the sixth section proceeds with elaborating on the
explicit properties of the probabilistic evolution approximants. The seventh and eighth
sections are devoted to the introduction of the “Evolution Operator” and the validation
of the method in the context of analytic and numeric applications. Finally, the ninth
section includes the concluding remarks for the paper.

2 Linear representation of a single autonomous ODE

Let us consider the following most general explicit one unknown autonomous ODE
with the accompanying initial condition

ξ̇ (t) = f (ξ(t)) , ξ(0) = a (1)

where all entities are real valued. It is important to note that this is not a limitation
especially since the case in which entities have complex values can be converted to a
set of two ordinary differential equations with appropriate initial conditions by sep-
arately investigating the real and imaginary parts. In this sense, the method is not
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limited to real valued entities, however for the sake of simplicity in the description of
the method, we will adhere to the case where all entities are real valued.

It is also important to note that contingencies of autonomy and explicitness can
similarly be circumvented. A nonautonomous ODE can be converted to a set of auton-
omous ODEs by defining a new unknown equivalent to a first degree polynomial of the
independent variable and related ODE. Such transformations underly a series of well
established approaches in mathematics such as space extension and kernel methods.

In order to circumvent the contingency of explicitness, differential calculus with
appropriate limitations can be used. In this report, we will not be further elaborating
on how these transformations need to be conducted. We only refer to these approaches
to show the vast applicability of this approach.

We also assume that the initial value a lies in the analyticity domain of the function
f (x) even though it seems to be possible to extend our analysis to the nonanalytical
cases with some precautions. If we consider a reference point that is represented by
xre f which lies in the analyticity domain of f then we can write the following Taylor
series expansion

f (x) =
∞∑

j=0

f j
(
x − xre f

) j (2)

where the coefficient f j stands for the value of the j th derivative of f at x = xre f

divided by j ! (2) implies that the right hand side of (1) is an infinite linear combination
of the power functions

(
ξ(t) − xre f

) j for natural number values of j . These power
functions are in fact the basis functions of the Taylor expansion which urges us to
construct an ODE for each of these basis functions. We can first define

x j (t) ≡ (
ξ(t) − xre f

) j−1
, j = 1, 2, 3, . . . (3)

and write

ẋ j (t) = ( j − 1)
(
ξ(t) − xre f

) j−2
ξ̇ (t) = ( j − 1)

(
ξ(t) − xre f

) j−2
f (ξ(t))

=
∞∑

k=0

( j − 1) fk
(
ξ(t)−xre f

)k+ j−2 =
∞∑

k=0

( j −1) fk xk+ j−1(t), j = 1, 2, 3, . . .

(4)

which can be put into the following more amenable matrix algebraic form by adding
the corresponding initial conditions

ẋ(t) = Ex(t), x(0) = a (5)

where

x(t) = [x1(t) x2(t) x3(t) . . .]T , a =
[

1
(
a − xre f

) (
a − xre f

)2
. . .

]T
(6)
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and

E =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 . . .

f0 f1 f2 f3 . . .

0 2 f0 2 f1 2 f2 . . .

0 0 3 f0 3 f1 . . .

0 0 0 4 f0 . . .
...

...
...

...
. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

We call E the “Evolution Matrix” since it is critical for specifying the evolution (in
time) of the sytem characterized by the infinite temporally varying state vector x(t).
More explicitly, the first row of the Evolution matrix is composed of zeroes while
the second row elements are the Taylor series expansion coefficents. The third row
of the Evolution Matrix is the one element rightward shifted form of the second row
after multiplication by 2 and addition of 0 as the first element. The nth row starts
with (n − 1) zero elements and then respectively contains the second row elements
multiplied by (n − 1). In other words, the Evolution Matrix is in an upper Hessenberg
form.

The equation in (5) is the initial value problem of an infinite set of linear ordinary
differential equations. The second element of its solution vector gives the sought
function ξ(t) after increasing the value by xre f as the solution of (1). The linearity
facilitates the analysis. However we have to be careful about potential convergence
issues coming from the infinite structures of the considered entities, the Evolution
Matrix E(t), the state vector x(t) and the initial vector a. The formal solution of (5)
can be written as follows

x(t) = etEa (8)

where the evaluation of the infinite exponential matrix function becomes the focal
issue. Even though a number of methods are applicable in this context, we prefer to
use the approach of spectral representation. However this requires the solution of the
eigenvalue problem of an infinite matrix which may be nontrivial. This is the case,
especially since it is possible for a continuous spectrum to emerge, making the corre-
sponding eigenvectors non-convergent standard vectors (this may happen when it is
not possible to construct converging infinite sequences of finite truncations to ODE).
On the other hand, the case where f0 vanishes substantially facilitates the analysis
since the Hessenberg form of the Evolution Matrix turns out to be a triangular matrix.
The spectrum of this triangular matrix is composed of single eigenvalues which are
proportional to f1 at scales of natural numbers. The lack of the multiplicity facilitates
the analysis since it precludes cases where the algebraic and geometric multiplicities
of certain eigenvalues are different, which would make the matrix potentially non-
diagonalizable. The vanishing f0 corresponds to the case where the right hand side
function f vanishes at x = xre f . If this happens, then the initial condition x(0) = xre f

enforces the solution, the function ξ(t), to remain at the constant value xre f . In other
words, the solution of (1) gets positioned at the phase space point where ξ and its
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temporal derivatives take the values xre f and 0 respectively when the initial value a,
moving along a path passing through xre f , arrives at xre f .

The circumstances described above can arise only when f has at least one zero.
There is no warranty for the existence of at least one zero to the function f and we
disregard singularities of f . In the interest of simplicity we confine ourselves to cases
where the function f is analytic (equivalently holomorphic) everywhere in the com-
plex plane of x . In other words, the complex plane is considered to be composed of
only finite complex number pairs. Its each point uniquely corresponds to a point on
the Riemann sphere whose equator is the unit circle (the circle with a radius equal to 1,
centered at the origin of the complex plane), on the complex plane. The line segment
which joins a point in the complex plane to the north pole of the Riemann sphere inter-
sects with the Riemann sphere. This correspondence between the intersection points
and the complex plane points spans all points of the Riemann sphere except its north
pole which is used as the reference point to make correspondence between the sphere
and complex plane points.

The complex plane points remaining inside its unit circle correspond to the lower
(south) Riemannian hemisphere while the upper (north) Riemannian hemisphere
points are corresponding to the complex plane points residing outside its unit cir-
cle. Each unit circle point of the complex plane remains at the same position but on
the equator of the Riemann sphere. The intersection point can not be located on the
north pole unless we do not take the line segment in a plane parallel to the complex
plane. Since this parallel plane can intersect with the complex plane only at infinity, any
infinite complex number can be considered to be represented by the Riemann sphere’s
north pole. Hence this north pole is identified as “Complex Infinity ”. The addition
of the north pole to the Riemann sphere corresponds to the addition of the Complex
Infinity to the complex plane. The formed plane is called “Extended Complex Plane”.
An entire function remains analytic everywhere except Complex Infinity. However,
this analyticity does not require the existence of zeroes for the entire function under
consideration. If it has zeroes then each zero enables us to get triangular Evolution
Matrix by taking the value xre f as the considered zero. This means that triangular-
ity can be obtained only at the zeroes of f . All other points enforce us to use upper
Hessenberg forms.

These discussions urge us to explore other way(s) to work with the right hand side
functions. To this end, we can use the so-called method, Space Extension”. We assume
that f (x), which is assumed to be entire, in (1) never vanishes except at Complex Infin-
ity (it is very well known that an entire function can take all values residing in the
complex plane with the unlikely exception of a single point such as zero in this case;
exponential function forms a good example to this end). We can define

η(t) ≡ f (ξ(t)) (9)

and get the following ODE by simple temporal differentiation

η̇(t) = f ′ (ξ(t)) ξ̇ (t) = f ′ (ξ(t)) f (ξ(t)) = η(t) f ′ (ξ(t)) (10)
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where prime stands for the differentiation with respect to argument. After the definition
in (9) we can rewrite the ODE in (1) as follows

ξ̇ (t) = η(t). (11)

Now we can gather what we have obtained here, in the following set of ODEs and
accompanying initial conditions

ξ̇ (t) = f1 (ξ(t), η(t)) , ξ(0) = a;
η̇(t) = f2 (ξ(t), η(t)) , η(0) = f (a), (12)

where

f1 (ξ, η) ≡ η, f2 (ξ, η) = f ′ (ξ) η. (13)

The Eq. (12) depend on the functional structure of f (x) not only through the ODEs but
also their initial conditions. The functional structure in the ODE part is now changed.
In the companion paper we focus on other forms of space extension which reduce the
ODE functional structure over the extended space to an extremely simple form which
has entire function structures even if the original ODE has singularities.

Equation (12) can be obtained for ODEs which are translated by a constant (i.e.,
f (x)+C where C is a constant). The translation can make it possible for the right hand
side to attain the vanishing property. This is reflected in the equations in (12) as vanish-
ing properties. The equations in (12) contain two unknowns. In other words, since there
are two state functions ξ and η the dimension of the state space is increased by one. This
is the reason why we engage in “Space Extension”. The companion of this paper fo-
cuses on the multidimensional cases by covering certain space extension possibilities.

The functions in (13) vanish on the ξ axis of (ξ, η)–plane. This means that the
constant vector value at the right hand side vanishes. In this multidimensional case,
we can use the folded matrix (folmat) concept. The Evolution Folmat of this case has
hypertriangular form and hence the spectral investigation becomes quite easy.

The space extension approach does not only extend the space to higher dimensions.
It also extends the problem under consideration to a broader class. This extension is
not only for adding vanishing properties to the right hand side function(s). It can vastly
simplify the structure of the Evolution Folmat over the extended space. The first author
of the paper reported a method to get conical structure (second degree multinomial)
in the right hand side function(s) [14,15]. We do not intend to focus on these kinds of
simplifications. For the purposes of this paper, we find it sufficient to utilize triangular
structures.

3 Why probabilistic evolution?

The Eq. (8) describes the motion of a hypothetical point in an infinite dimensional
Cartesian space. The equation is in a particular form due to the nature of the initial vec-
tor a whose elements are natural number powers of a single parameter,

(
a − xre f

)
. We
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call this type of initial vectors “Single Parameter Power Vector”. This specific power
nature of the initial vector in (8) is an important limitation even in the case of a single
ODE. The ODE in (5) can be more generalized by extending the initial conditions to
the infinite vector whose elements are certain arbitrary values, a0, a1, a2, . . .. Even
though these are not powers of a single parameter, it is possible to consider them in
an initial vector which is finite or infinite linear combinations of certain power vectors
with different parameter values. Therefore, we can write

a j ≡
∞∫

−∞
dαW (α)α j , j = 0, 1, 2, . . . (14)

where W (α) needs be a true weight function, at least in a finite interval even though
discrete weights can be separately investigated, otherwise certain complications caus-
ing some level of arbitrarinesses may occur in the sense of probabilistic nature. This
urges us to write

x j (t) ≡
∞∫

−∞
dαW (α)y j (t, α) , j = 0, 1, 2, . . . (15)

which results in an infinite ODE and accompanying initial conditions like in (5). This
suggests the use of expectation values for expressing the initial vector and therefore
the unknowns which are expressed as temporally changing expectation values for the
elements of x(t) vector. The introduction of expectation values brings the probability
concept to the scene. Therefore a single power vector is related to the Dirac delta
function type distributions which characterize the probability. In other words, the case
in (8) corresponds to sharply localized probability densities. All these facts urge us
to call (5) “Probabilistic Evolution Equation (PEE)”. The evolution of the system in
time is characterized by E and the propagation of the system state independent of
the initial condition is described by the exponential matrix etE we call “Probabilistic
Matrix Propagator” or simply “Matrix Propagator”.

It is important to emphasize the difference between the linear independence and
the functional independence. What we have used here is the linear independence of
the basis functions x j (t)s. This linear independence enables them to span an appro-
priate linear vector space which may become a Hilbert space under an appropriate
inner product definition. On the other hand, these functions are functionally depen-
dent because they are different instantiations of a single canonical form. The use of
linear independence takes us to completely linear ODEs on an appropriate infinite
linear vector space while the functional dependence preserves the nonlinearity and
therefore the original concise structure. Finally, it is important to point out “The use of
linear independence over infinite dimensional space underlies linearity”, on the other
hand, “Finiteness in the working space is attained at the expense of nonlinearity”.
This may be considered as a quite general and valid “rule of thumb”. Kernel space
methods developed for nonlinear data processing can be given as good examples of
this intuition [16,17].
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4 Triangular case and triangular approximants

The discussions above are only relevant for cases where f0 vanishes. The Evolution
Matrix E, which is a function of xre f , becomes triangular for these cases. This triangu-
larity is quite important since it enables us to evaluate the exponential of the Evolution
Matrix through finite truncations via an easy way such that the differences from one
truncation to its nearest higher neighbor occur in only extended rows and columns. To
explain what happens we can define

En ≡

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 . . . 0
0 f1 f2 f3 . . . fn

0 0 2 f1 2 f2 . . . 2 fn−1
0 0 0 3 f1 . . . 3 fn−2
...

...
...

...
. . .

...

0 0 0 0 . . . n f1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

an ≡

⎡

⎢⎢⎢⎢⎢⎣

1(
a − xre f

)
(
a − xre f

)2

...(
a − xre f

)n

⎤

⎥⎥⎥⎥⎥⎦
(16)

θn(t, a) ≡ e(c,n+1)
2

T
etEn an, n = 0, 1, 2, . . . (17)

where e(c,n+1)
2 stands for the second standard unit vector of (n+1)-dimensional Carte-

sian space, that is, the unit vector whose only nonzero element which takes the value
of 1 resides on the second position.

It is not hard to show that the following relation,

etEn+1 =
[

etEn
(
etEn − e(n+1) f1t In+1

) [
En − (n + 1) f1In+1

]−1 un+1

0T
n+1 e(n+1) f1t

]

n = 0, 1, 2, . . . , (18)

for (n + 1) × (n + 1) type identity matrix In+1 and

0T
n+1 ≡ [ 0 . . . 0 ] , un+1 ≡ [

0 fn+1 2 fn 3 fn−1 . . . n f2
]

(19)

(where 0n+1 contains (n + 1) number of zeroes) hold. This means that when we pass
from the nth truncation approximant to the (n +1)th one, the first (n +1) terms do not
change and the change is proportional to

(
a − xre f

)n+1. This is a beautiful property
since all coefficients of

(
a − xre f

)
powers existing in an approximant never changes

in each step from another approximant, whose order is greater than the considered
approximant, to the next higher ordered one. As a matter of fact this corresponds
to extracting the factor

(
a − xre f

)
from the unknown in the original ODE and then

expanding the unknown to powers of
(
a − xre f

)
, and finally, truncating the expan-

sion at the order of the truncation approximant of the probabilistic evolution (this is
closely related to the Taylor approximation method for ODEs when the approximants
are expanded in powers of t).

The triangular structure of En enables us to evaluate the inversion term[
En − (n + 1) f1In+1,

]−1 in a rather easy way. It even permits us to construct a
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recursive method to accomplish this. Hence, the right uppermost term in (18) can
be evaluated recursively since the exponential factor etEn is assumed to be known.
Therefore the implementation of this procedure is straightforward. Therefore we can
comfortably say that the truncation approximants of probabilistic evolution can be
evaluated rather easily. It fixes the first (n +1) terms of the true solution of the infinite
element case after the construction of the nth approximant.

We call θn(t, a) which is an nth degree polynomial in
(
a − xre f

)
“nth Probabilistic

Evolution Approximant”. This approximant matches the nth degree polynomial trun-
cation of θ∞(t, a) in

(
a − xre f

)
because of the triangularity in the Evolution Matrix.

5 Spectral issues for the triangular case

Now we focus on the spectral properties of the Evolution Matrix E for the case of
vanishing f0. The triangular structure of E can be expressed by using the following
block representations

E ≡
⎡

⎣
En−1 un Rn

0T
n n f1 vT

n
0∞×n 0∞ E(n+1)→∞

⎤

⎦ (20)

where En−1, 0n and 0∞ stand for the left uppermost n × n truncation of the Evolution
matrix as we used before and the zero matrices with n and infinite number of elements
respectively while 0∞×n denotes the zero matrix composed of n infinite columns.
While the n element vector un is same as its previously defined form, the other blocks
are defined as follows

Rn ≡

⎡

⎢⎢⎢⎢⎢⎣

0 0 0 0 . . .

fn+1 fn+2 fn+3 fn+4 . . .

2 fn 2 fn+1 2 fn+2 2 fn+3 . . .
...

...
...

...
. . .

(n − 1) f3 (n − 1) f4 (n − 1) f5 (n − 1) f6 . . .

⎤

⎥⎥⎥⎥⎥⎦
(21)

vT
n ≡ [ n f2 n f3 n f4 . . . ] (22)

E(n+1)→∞ ≡

⎡

⎢⎢⎢⎢⎢⎣

(n + 1) f1 (n + 1) f2 (n + 1) f3 (n + 1) f4 . . .

0 (n + 2) f1 (n + 2) f2 (n + 2) f3 . . .

0 0 (n + 3) f1 (n + 2) f2 . . .

0 0 0 (n + 4) f1 . . .
...

...
...

...
. . .

⎤

⎥⎥⎥⎥⎥⎦
(23)

The eigenvalue problem of the Evolution Matrix can be formulated as follows

Ee(r)
k = εke(r)

k , ET e(�)
k = εke(�)

k , k = 1, 2, 3, . . . (24)

where εk stands for the kth eigenvalue while e(r)
k and e(�)

k denote the corresponding
right and left eigenvectors respectively. The eigenvectors are apparently given by the
following equalities
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εk = k f1, k = 0, 1, 2, . . . (25)

while the following dual orthonormality conditions are satisfied amongst the right and
left eigenvectors

(
e(�)

j , e(�)
k

)
≡ e(�)

j

T
e(�)

k = δ j,k, j, k = 1, 2, . . . (26)

where δ j,k stands for the Kroenecker’s delta symbol which vanishes for different j, k
values while it becomes 1 when j, k match.

Because of the symmetry in first row and column the zeroth eigenvectors, left and
right, are all e1 which is first unit vector of the Cartesian space. They correspond to the
zeroth eigenvalue which vanishes. For the remaining cases, the explicit block struc-
tures of the right and left eigenvectors can be given as follows by skipping intermediate
details of the routine derivation procedure

e(r)
n =

⎡

⎣
− [

En−1 − εnIn
]−1 un

1
0∞

⎤

⎦ , n = 1, 2, 3, . . . (27)

e(�)
n =

⎡

⎢⎣
0n

1

−
[

ET
(n+1)→∞ − εnI∞

]−1
vn

⎤

⎥⎦ , n = 1, 2, 3, . . . (28)

6 Explicit properties of probabilistic evolution approximants

To get more explicit formulae for probabilistic evolution approximants we can start
by explicitly giving the following spectral representation

etEn =
n∑

j=0

e j f1t e(r,n+1)
j+1 e(�,n+1)

j+1
T

(29)

where the superscripts (r, n + 1) and (�, n + 1) refer to right and left eigenvectors of
En , which is the (n + 1) dimensional truncation of the Evolution Matrix defined over
infinite dimensional Cartesian space, respectively. This representation enables us to
write

θn(t, a) =
n∑

j1=0

n∑

j2=0

Θ
(n)
j1+1, j2+1e j1 f1t (

a − xre f
) j2 (30)

where, e(c,n+1)
j being the j th standard unit vector of the (n +1) dimensional Cartesian

space, which has 1 as only nonzero element located at its j th place,

Θ
(n)
j1+1, j2+1 ≡

(
e(c,n+1)

2
T

e(r,n+1)
j1+1

) (
e(�,n+1)

j1+1
T

e(c,n+1)
j2+1

)
, j1, j2 = 0, . . . , n. (31)
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Apparently the matrix Θn is upper triangular because of the particular natures of the
left eigenvectors. To proceed, we can define the power vector as follows

p (x) ≡
[

1 x x2 . . .
]T

(32)

which is a one parameter infinite vector. Its finite truncations can also be used when
they are needed. Now (30) can be rewritten in the following concise form

θn(t, a) = pn

(
e f1t

)T
Θnan (33)

where pn means a power vector truncated at the nth power. The upper triangularity in
Θn enables us to construct the following recursion over θns

θn(t, a) = θn−1(t, a) +
n∑

j1=0

Θ
(n)
j1+1,n+1e j1 f1t (

a − xre f
)n (34)

or more explictly

θn(t, a) = θn−1(t, a)

+
n∑

j1=0

(
e(c,n+1)

2
T

e(r,n+1)
j1+1

) (
e(�,n+1)

j1+1
T

e(c,n+1)
n+1

)
e j1 f1t (

a − xre f
)n

(35)

by skipping the intermediate construction details.
Upper triangular matrix Θn ’s first row is completely composed of zeroes. On the

other hand, all elements of Θn are same as the elements of the same locations in all
Θm matrices for m values greater than n. First few nonzero elements of these matrices
are given below

Θ
(n)
1,1 = 1, Θ

(n)
1,2 = − f2

f1
, Θ

(n)
1,3 = − f3

2 f1
+ f 2

2

f 2
1

, Θ
(n)
1,4 = − f4

3 f1
+ 7 f2 f3

6 f 2
1

− f 3
2

f 3
1

Θ
(n)
2,2 = f2

f1
, Θ

(n)
2,3 = −2 f 2

2

f 2
1

, Θ
(n)
2,4 = 3 f 3

2

f 3
1

− f2 f3

f 2
1

Θ
(n)
3,3 = f 2

2

f 2
1

+ f3

2 f1
, Θ

(n)
3,4 = −3 f 3

2

f 3
1

− 3 f2 f3

2 f 2
1

,

Θ
(n)
4,4 = f 3

2

f 3
1

+ 4 f1 f2 f3

3 f 3
1

+ f4

3 f1
. (36)

which remain valid as long as n is not less than anyone of the subindices.
We need to emphasize that all the analyses above remain valid as long as f1 does

not vanish. Otherwise a slightly different procedure should be used since all the
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eigen spectrum contracts to the single eigenvalue which vanishes. The vanishing zero
eigenvalue is infinitely multiple and may require a Jordan canonical form type struc-
ture or otherwise certain direct algebraic analysis may need to be conducted to evaluate
infinite or truncated matrix propagators.

7 Evolution operator

Let us consider a function g(x) which can be expanded to a Taylor series as follows

g(x) ≡
∞∑

j=0

g j
(
x − xre f

) j (37)

which can be represented in the following more comprehensible form

g(x) = gT p
(
x − xre f

)
(38)

where

g ≡ [ g0 g1 . . . ]T . (39)

Now it is not hard to see that the following equalities,

Ep
(
x − xre f

) =
( ∞∑

k=0

fk
(
x − xre f

)k

) [
0 1 2

(
x − xre f

)
3
(
x − xre f

)2
. . .

]T

=
( ∞∑

k=0

fk
(
x − xre f

)k

)
∂

∂x

[
1

(
x − xre f

) (
x − xre f

)2
. . .

]T
,

(40)

hold as long as the infinite series in the factor of the right hand side vectors converge.
This convergence exists because of the analiticity in f (x) and therefore we can write

Ep
(
x − xre f

) = f (x)
∂

∂x

[
1

(
x − xre f

) (
x − xre f

)2
. . .

]T
. (41)

which implies

gT Ep
(
x − xre f

) ≡
(

ET g
)T

p
(
x − xre f

) = f (x)
∂

∂x
gT p

(
x − xre f

)

= f (x)
∂

∂x
g(x) (42)

This result shows that the action of the Evolution Matrix Transpose on an arbitrary
analytic function g(x)’s coefficient vector can be represented by the operator whose
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action on its operand is differentiation followed by the multiplication with the func-
tion f (x). Hence this operator’s Hermitian conjugate should be corresponding to the
Evolution Matrix. We define

E†g(x) ≡ f (x)
dg(x)

dx
(43)

where g(x) denotes an arbitrary analytic function. We call E “Evolution Operator”.
Therefore the Evolution Matrix E represents the matrix representation of the Evolu-
tion Operator. It may help to investigate many issues over the continuous items which
we plan to do so in our future works. Having said that, we may mention a property of
E† here. It is very well known that the eigenvalues of E† match the eigenvalues of E .
On the other hand, the first order homogeneous structure of E† in the differentiation
operator with respect to x enables us to write the following identities

E† (g1(x)g2(x)) ≡ E† (g1(x)) g2(x) + g1(x)E† (g2(x)) (44)

E† (
g(x)m) ≡ mE† (g(x))m−1 (45)

where g1 and g2 stand for arbitrary analytical functions while m takes natural number
values. We can specify E†’s eigenfunction corresponding to the eigenvalue f1 by using
the ϕ(x) symbol. Then (45) means that the natural number powers of ϕ(x) are also
E†’s eigenfunctions corresponding to different eigenvalues. More specifically, ϕ(x)n

is the eigenfunction of E† corresponding to its nth eigenvalue, εn = n f1, for natural
number values of n. Since the eigenvalues of E† are all single (whose multiplicities
are just 1), the eigenfunction set of E† is spanned by the natural number powers of
ϕ(x). Although these eigenfunctions are linearly independent they are functionally
dependent and generated by a single function ϕ(x). Finding ϕ(x) and its utilization in
convergence analysis is left to one of our future works.

8 Analytical and/or numerical validations

The formal analytic solution of (1) can be obtained by solving t in terms of ξ as follows

t = τ (ξ) =
ξ∫

a

dξ1

f (ξ1)
(46)

If the integration above cannot be analytically performed certain quadrature based
approximation approaches that are in accordance with the structure of the integrand
can be used. It is important to note that the equality in (46) is not the final result since
we desire to obtain the explicit dependence of ξ on t . We need the inversion of the
function τ since we can formally write

ξ = τ−1 (t) (47)

whose validity may not cover the whole nonnegative values of t . The function f (ξ)

and the initial parameter a are the agents that determine the validity domain. Even in
the case of entire functions, inversion may not cover the whole domain (nonnegative
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values) of t . Nevertheless, there is an abundance of cases where this inversion can be
realised analytically. In our experiments, we have observed that the analytical result
is harmonious with the truncation approximants around the initial point. The Taylor
series coefficients of the true solution in powers of t are revealed systematically by the
truncation approximants as we increase the truncation order. Accordingly anticipated
observations can be considered to signal the revelation of convergence properties.

9 Concluding remarks

We have developed an approximation scheme for the solution of a single autonomous
explicit ordinary differential equation by using its probabilistic evolution equation and
related truncation approximants. We enumerate important concluding remarks below

1. The first and most important original finding here is the construction of the prob-
abilistic evolution equations by using expansions over basis functions;

2. Even though one unknown ODEs can be considered trivial, we extract a number
of important general features which can be applied to ODEs with more than one
unknowns;

3. We have focused on the cases where the right hand side function of the original
ODE is an entire function which has at least one zero. If it has no zero except
the one at complex infinity then space extension seems to be a practical and effi-
cient method. On the other hand the existence of more than one zeroes may result
in diverging infinite element vectors. The analytic continuation and space exten-
sion possibilities can again be considered as spare tools. The utilization of these
items in the format of this paper is completely new. Especially triangularity in the
evolution matrix is very important;

4. Even though we have not explicitly given the numerical experimentations on the
entire right hand side functions having more than one zeroes, there are implica-
tions that the truncation approximants converge for some finite t intervals over
which the inverse of τ(ξ) can be defined. These facts illuminate the road to finding
convergence properties and probably brings the analytic continuation possibilities
to mind. All these issues will be at the focus of our upcoming works;

5. It is important to consider cases where both f0 and f1 simultaneously vanish. We
have the triangular structure again for this case. However all the diagonal ele-
ments of the Evolution Matrix vanish. Therefore, there, only a single but infinitely
multiple eigenvalue of zero value is obtained. The infinite multiplicity results
in Jordan canonical form since only two linearly independent eigenvectors are
obtained for this case if f2 does not vanish (otherwise the number of linearly
independent eigenvectors increases depending on the number of vanishing first
Taylor coefficients). The hidden infinitely many eigenvectors can be revealed as
usual by seeking the eigenvectors of the powers of the Evolution Matrix. The
Evolution Operator counterpart of the analysis in this case may help to reveal the
important details even though it is left for future studies;

6. The entirety is not a great limitation and all we have done here can be modified for
the singular cases. However, as we mentioned in this paper, the space extension
concept may be useful to remove singularities from the right hand side function(s)
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of ODE(s) at the expense of their appearences at the initial conditions. We do not
focus on these issues in details here.

The companion of this paper focuses on space extension possibilities and extension
of what we have done here to more than one unknown in the ODEs and accompa-
nying initial conditions. We also give certain details of the multilinear algebra based
on folded items, folvecs (folded vectors), folmats (folded matrices), folarrs (folded
arrays) there.
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